这也许是我复现的所有论文中效果最好的了吧

这也许是我见过最好用的低照度图片了吧🦄

1

开始之前,背景音乐先安排上。

这篇博客介绍一下论文中的方法,目的不是让除了我以外的人能看懂,因为我也做不到让别人能读懂😓,大概就算是是阅读笔记吧。欲知方法细节,查看论文原文.

方法简介

流程图

image-20210128171926493

算法共分为以下几个步骤:

  1. 提取 Y 通道。
  2. 根据 Y 通道图的直方图分布情况分别求出两个 γ\gamma ,使其分别有效作用于暗区和亮区域。
  3. 使用 DoG 函数对伽马校正结果图进行局部对比度增强。
  4. 对增强结果进行自适应的线性加权融合。
  5. 利用 Y 通道的融合结果对图像进行色彩校正得到最终的结果图。

提取 Y 通道

Lin (x,y)=0.299Iin R(x,y)+0.587Iin G(x,y)+0.114Iin B(x,y)\begin{aligned} L_{\text {in }}(x, y)=0.299 \cdot I_{\text {in }}^{R}(x, y)+0.587 & \cdot I_{\text {in }}^{G}(x, y) + 0.114 \cdot I_{\text {in }}^{B}(x, y) \end{aligned}

对 Y 通道进行对数归一化:

Llog(x,y)=logα(Lin(x,y)+1)L_{\log }(x, y)=\log _{\alpha}\left(L_{i n}(x, y)+1\right)

其中:

α=max(Lin(x,y))+1\alpha = max(L_{in}(x,y)) + 1

自适应伽马校正

首先,以 0.5 为阈值将对数归一化后的 Y 通道分为亮区域和暗区域两个部分,即大于 0.5 的像素值被划分在亮区域,小于或等于 0.5 的像素被划分在暗区域。

分别根据亮区域和暗区域的标准差来计算 期望中位数,再通过全局搜索的方式寻找两个 γ\gamma 使得经过伽马校正后的图像最接近期望中位数。

以下为暗区和亮区期望中位数的计算方法:

ML=13+σLMH=1σH\begin{array}{l} M_{L}=\frac{1}{3}+\sigma_{L} \\ M_{H}=1-\sigma_{H} \end{array}

其中:L 下标表示暗区;H 下标表示亮区。

两个 γ\gamma 的全局搜索方法如下:

γL=argminγi(med(Sdark γi)ML)γi{0.1,0.11,,1}γH=argmin(med(Sbright γi)MH)γiγi{1,1.1,,10}\begin{array}{r} \gamma_{L}=\underset{\gamma_{i}}{\arg \min }\left(\left|\operatorname{med}\left(S_{\text {dark }}^{\gamma_{i}}\right)-M_{L}\right|\right) \\ \gamma_{i} \in\{0.1,0.11, \ldots, 1\} \\ \gamma_{H}=\underset{\gamma_{i}}{\arg \min \left(\left|\operatorname{med}\left(S_{\text {bright }}^{\gamma_{i}}\right)-M_{H}\right|\right)} \\ \gamma_{i} \in\{1,1.1, \ldots, 10\} \end{array}

其中:(·)$ 是中位数算子。{dark}^{\gamma_i}$ 表示的是 {log}(x,y)^{\gamma _i} \le 0.5$ 的像素值。

分别使用以上两个 γ\gamma 对输入图像进行伽马校正,得到亮区结果和暗区结果。

Ld(x,y)=(Llog(x,y))γLLb(x,y)=(Llog(x,y))γH\begin{array}{l} L_{d}(x, y)=\left(L_{\log }(x, y)\right)^{\gamma_{L}} \\ L_{b}(x, y)=\left(L_{\log }(x, y)\right)^{\gamma_{H}} \end{array}

局部对比度增强

使用 DoG 模型分别作用于亮区校正结果图和暗区校正结果图,实现图像的对比度增强。具体方法为:

Ld(x,y)=Ld(x,y)+(LdDoGσc,σs)(x,y)Lb(x,y)=Lb(x,y)+(LbDoGσc,σs)(x,y)DoGσc,σs(x,y)=12πσc2exp(x2+y22σc2)12πσs2exp(x2+y22σs2)\begin{aligned} L_{d}^{\prime}(x, y)=& L_{d}(x, y)+\left(L_{d} * D o G_{\sigma_{c}, \sigma_{s}}\right)(x, y) \\ L_{b}^{\prime}(x, y)=& L_{b}(x, y)+\left(L_{b} * D o G_{\sigma_{c}, \sigma_{s}}\right)(x, y) \\ D o G_{\sigma_{c}, \sigma_{s}}(x, y)=& \frac{1}{2 \pi \sigma_{c}^{2}} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma_{c}^{2}}\right) -\frac{1}{2 \pi \sigma_{s}^{2}} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma_{s}^{2}}\right) \end{aligned}

自适应融合

这里使用一种依赖于亮度的自适应线性加权融合方法。

其权重的计算方式为:

w(x,y)=exp(Lb(x,y)22σw2)w(x, y)=\exp \left(-\frac{L_{b}(x, y)^{2}}{2 \sigma_{w}^{2}}\right)

此处设置 σw=0.5\sigma_w = 0.5

融合方法为:

Lout (x,y)=w(x,y)Ld(x,y)+(1w(x,y))Lb(x,y)L_{\text {out }}(x, y)=w(x, y) \cdot L_{d}^{\prime}(x, y)+(1-w(x, y)) \cdot L_{b}^{\prime}(x, y)

另外,此处对输出结果进行了一步线性归一化操作。

自适应的色彩恢复

此处依然是一种亮度依赖的自适应方法。

Iout c(x,y)=Lout (x,y)(Iinc(x,y)Lin (x,y))s(x,y)s(x,y)=1tanh(Lb(x,y))\begin{aligned} I_{\text {out }}^{c}(x, y) &=L_{\text {out }}(x, y)\left(\frac{I_{i n}^{c}(x, y)}{L_{\text {in }}(x, y)}\right)^{s(x, y)} \\ s(x, y) &=1-\tanh \left(L_{b}(x, y)\right) \end{aligned}

Matlab实现

分区

分区操作只需要记录亮区像素和暗区像素的值就可以,因此此处采用遍历图像的方式对每个像素点进行判断,大于0.5 则加入亮区数组,否则加入暗区数组。

function [Ld,Lb] = fen_qu(Lin)
i = 1;
j = 1;
[m,n] = size(Lin);
Ld = 0;
Lb = 0;
for k = 1:m*n
    x = Lin(k);
    if x <= 0.5
        Ld(i) = x;
        i = i + 1;
    end
    if x > 0.5
        Lb(j) = x;
        j = j + 1;
    end
end
end

DoG 算子

DoG 算子实际上就是两个高斯函数的差,因此这里先实现一个二维的高斯函数。

二维高斯函数也可以使用 Matlab 内置函数fspecial来实现。

function gaussFun = GaussFun2D(hsize) 

% sigma = double(hsize)/6.0; % 3*sigma = radius, i.e., 6*sigma = diameter (hsize)
% gaussFun = fspecial('gaussian',hsize,sigma);

gaussFun = zeros(hsize,hsize);
rr = (hsize+1)/2;
%rr = (hsize-1)/2;
for i=1:hsize
    for j=1:hsize
				tmpV = (i-rr)*(i-rr) + (j-rr)*(j-rr);
				gaussFun(i,j) = exp(-9.0*tmpV/rr/rr);
				%gaussFun(i,j) = exp(-4.5*tmpV/rr/rr);
				%sigma = rr/3;
				%gaussFun(i,j) = exp(-tmpV/(2*sigma*sigma))/(2*pi*sigma*sigma);
    end
end
end

DoG 算子的实现如下:

function outImg = DoG(Img,rr_RF,rr_IF,m_qA1,m_qA2,antImg)

th1 = 2*rr_RF + 1; 
hsize = th1;
pa_gauss1 = GaussFun2D(hsize);
for i=1:th1
    for j=1:th1
        di = i-rr_RF-1;
        dj = j-rr_RF-1;
        tmpV = di*di + dj*dj;
        if tmpV>rr_RF*rr_RF
            pa_gauss1(i,j) = 0.0;
        end
    end
end
pa_gauss1 = m_qA1*pa_gauss1/sum(sum(pa_gauss1));


th2  = 2*rr_IF + 1;
hsize = th2;
pa_gauss2 = GaussFun2D(hsize);
for i=1:th2
    for j=1:th2
        di = i-rr_IF-1;
        dj = j-rr_IF-1;
        tmpV = di*di + dj*dj;
        if tmpV>rr_IF*rr_IF || tmpV<=rr_RF*rr_RF
            pa_gauss2(i,j) = 0.0;
        end
    end
end
pa_gauss2 = m_qA2*pa_gauss2/sum(sum(pa_gauss2));

SurroundImgLists = imfilter(antImg,pa_gauss2,'conv','symmetric');
CenterImgLists = imfilter(Img,pa_gauss1,'conv','symmetric');

outImg = CenterImgLists - SurroundImgLists;
outImg(outImg<0.0) = 0.0;
end

线性归一化

function [outputs] = Normalization(arg)
    MAX = max(arg(:));
    MIN = min(arg(:));
    outputs = (arg - MIN)./ (MAX - MIN);
end

其他操作

最后,将其他操作写在主函数中,详见代码注释。

function outputs = main(input)
I = im2double(input);
R = I(:,:,1);
G = I(:,:,2);
B = I(:,:,3);

% 计算 Y 通道
Lin = 0.299*R + 0.587*G +0.114*B;

% 对数归一化
alpha = max(max(Lin)) + 1;
Llog = log(Lin + 1) / log(alpha);

% 计算期望中位数
[Ld , Lb] = fen_qu(Llog);
ML = 1/3 + std(Ld);
MH = 1 - std(Lb);

% 搜索最优 γ
Min1 = zeros(1,91);
Min2 = zeros(1,91);
k = 1;
for i = 0.1:0.01:1
    clear Ld
    [Ld , ~] = fen_qu(Llog.^i);
    Min1(k) = abs(median(Ld) - ML);
    k = k + 1;
end
k = 1;
for i = 1:0.1:10
    clear Lb
    [~ , Lb] = fen_qu(Llog.^i);
    Min2(k) = abs(median(Lb) - MH);
    k = k + 1;
end
gamma_L = (find(Min1 == min(Min1)) - 1) * 0.01 + 0.1;
gamma_H = (find(Min2 == min(Min2)) - 1) * 0.1 + 1;

% 伽马校正
Ld = Llog .^ gamma_L;
Lb = Llog .^ gamma_H;

% 局部对比度增强
Ld_p = Ld + DoG(Ld,1,3,1,1,Ld);
Lb_p = Lb + DoG(Lb,1,3,1,1,Lb);

% 自适应权重计算与图像融合
w = exp(-(Lb.^2)./(2*0.5*0.5));
L_out = w .* Ld_p + (1-w) .* Lb_p;
L_out = Normalization(L_out);

% 自适应色彩恢复
s = 1 - tanh(Lb);

R_out = L_out .* ((R ./ Lin).^s);
G_out = L_out .* ((G ./ Lin).^s);
B_out = L_out .* ((B ./ Lin).^s);

% 输出
outputs = cat(3,R_out,G_out,B_out);
end

几张低照度图像

左为原图,右为结果图。

01

1

02

03

4

5

703

785

几张水下图像

左为原图,右为结果图。

10

57

9

184

8

7

910

41